Monitoring the Reductive and Oxidative Half-Reactions of a Flavin-Dependent Monooxygenase using Stopped-Flow Spectrophotometry
نویسندگان
چکیده
Aspergillus fumigatus siderophore A (SidA) is an FAD-containing monooxygenase that catalyzes the hydroxylation of ornithine in the biosynthesis of hydroxamate siderophores that are essential for virulence (e.g. ferricrocin or N',N",N'''-triacetylfusarinine C). The reaction catalyzed by SidA can be divided into reductive and oxidative half-reactions. In the reductive half-reaction, the oxidized FAD bound to Af SidA, is reduced by NADPH. In the oxidative half-reaction, the reduced cofactor reacts with molecular oxygen to form a C4a-hydroperoxyflavin intermediate, which transfers an oxygen atom to ornithine. Here, we describe a procedure to measure the rates and detect the different spectral forms of SidA using a stopped-flow instrument installed in an anaerobic glove box. In the stopped-flow instrument, small volumes of reactants are rapidly mixed, and after the flow is stopped by the stop syringe, the spectral changes of the solution placed in the observation cell are recorded over time. In the first part of the experiment, we show how we can use the stopped-flow instrument in single mode, where the anaerobic reduction of the flavin in Af SidA by NADPH is directly measured. We then use double mixing settings where Af SidA is first anaerobically reduced by NADPH for a designated period of time in an aging loop, and then reacted with molecular oxygen in the observation cell. In order to perform this experiment, anaerobic buffers are necessary because when only the reductive half-reaction is monitored, any oxygen in the solutions will react with the reduced flavin cofactor and form a C4a-hydroperoxyflavin intermediate that will ultimately decay back into the oxidized flavin. This would not allow the user to accurately measure rates of reduction since there would be complete turnover of the enzyme. When the oxidative half-reaction is being studied the enzyme must be reduced in the absence of oxygen so that just the steps between reduction and oxidation are observed. One of the buffers used in this experiment is oxygen saturated so that we can study the oxidative half-reaction at higher concentrations of oxygen. These are often the procedures carried out when studying either the reductive or oxidative half-reactions with flavin-containing monooxygenases. The time scale of the pre-steady-state experiments performed with the stopped-flow is milliseconds to seconds, which allow the determination of intrinsic rate constants and the detection and identification of intermediates in the reaction. The procedures described here can be applied to other flavin-dependent monooxygenases.
منابع مشابه
Roles of Serine 101, Histidine 310 and Valine 464 in the Reaction Catalyzed by Choline Oxidase from Arthrobacter Globiformis
The enzymatic oxidation of choline to glycine betaine is of interest because organisms accumulate glycine betaine intracellularly in response to stress conditions, as such it is of potential interest for the genetic engineering of crops that do not naturally possess efficient pathways for the synthesis of glycine betaine, and for the potential development of drugs that target the glycine betain...
متن کاملReal‐time analysis of conformational control in electron transfer reactions of human cytochrome P450 reductase with cytochrome c
Protein domain dynamics and electron transfer chemistry are often associated, but real-time analysis of domain motion in enzyme-catalysed reactions and the elucidation of mechanistic schemes that relate these motions to the reaction chemistry are major challenges for biological catalysis research. Previously we suggested that reduction of human cytochrome P450 reductase with the reducing coenzy...
متن کاملStudies on the oxidative half-reaction of p-hydroxyphenylacetate 3-hydroxylase.
The oxidative half-reaction of the two-protein enzyme, p-hydroxyphenylacetate 3-hydroxylase from Pseudomonas putida, has been studied by absorbance stopped-flow techniques. The formation of three flavin-oxygen intermediates, the anionic and protonated forms of the flavin hydroperoxide (intermediates I and I) and the hydroxyflavin (intermediate III), was observed during the course of the oxygen ...
متن کاملFluoride elimination from substrates in hydroxylation reactions catalyzed by p-hydroxybenzoate hydroxylase.
Several fluorinated derivatives of p-hydroxybenzoate were synthesized and examined as substrates in the reaction catalyzed by p-hydroxybenzoate hydroxylase. All the derivatives tested served as substrates, undergoing tightly coupled hydroxylation by molecular oxygen. Hydroxylation of the difluoro and tetrafluoro derivatives liberated stoichiometric amounts of fluoride. Little or no fluoride was...
متن کاملStructural mechanism for bacterial oxidation of oceanic trimethylamine into trimethylamine N-oxide.
Trimethylamine (TMA) and trimethylamine N-oxide (TMAO) are widespread in the ocean and are important nitrogen source for bacteria. TMA monooxygenase (Tmm), a bacterial flavin-containing monooxygenase (FMO), is found widespread in marine bacteria and is responsible for converting TMA to TMAO. However, the molecular mechanism of TMA oxygenation by Tmm has not been explained. Here, we determined t...
متن کامل